Journal of Organometallic Chemistry, 112 (1976) C1–C2 © Elsevier Sequoia S.A., Lausanne – J'rinted in The Netherlands

Preliminary communication

BIS(PENTAFLUOROPHENYL)YTTERBIUM: A TRANSMETALLATION SYNTHESIS OF A σ -BONDED LANTHANIDE ORGANOMETALLIC COMPOUND

G.B. DEACON * and D.G. VINCE

Chemistry Department, Monash University, Clayton, Victoria, 3168 (Australia)

(Received February 16th, 1976)

Summary

Bis(pentafluorophenyl)ytterbium has been isolated as the highly air-sensitive complex $(C_6F_5)_2$ Yb(THF)₄ (THF = tetrahydrofuran) from a transmetallation reaction between bis(pentafluorophenyl)mercury and ytterbium metal in tetrahydrofuran.

No fluorocarbon lanthanide organometallics are known [1], and only one fluorocarbon actinide derivative has been prepared, viz. $(\eta^5 - C_5 H_5)_3 U C_6 F_5$ [2]. We now report the synthesis of bis(pentafluorophenyl)ytterbium by a transmetallation reaction. This method has not previously been used to give σ -bonded organo-lanthanides or -actinides [1], though unsuccessful attempts have been reported [3,4].

On stirring approximately equimolar amounts of bis(pentafluorophenyl)mercury and -ytterbium metal in dry tetrahydrofuran at room temperature under rigorously purified nitrogen, an exothermic reaction occurred. Mercury was deposited and a deep orange solution of bis(pentafluorophenyl)ytterbium formed.

 $(C_6F_5)_2Hg + Yb \rightarrow (C_6F_5)_2Yb + Hg\downarrow **$

Addition of petroleum ether and cooling gave deep orange-red crystals of bis(pentafluorophenyl)tetrakis(tetrahydrofuran)ytterbium(II) in 29% yield. Satisfactory analyses (C, H, Yb) were obtained, and hydrolysis of the compound gave pentafluorobenzene. The crystals are exceptionally sensitive to oxygen and water, and decompose on being heated to 75° C in a sealed tube (explode at

^{*} To whom correspondence should be addressed.

^{**} A conceptually related reaction is known [3], viz. conversion of ClHgCr(CO)₃(η^5 -C₅H₅) by ytterbiun metal into ClYb[Cr(CO)₃(η^5 -C₅H₅)]_y (y = 1 or 2).

78°C), on storage for 48 h at room temperature (become black), or on treatment with hexachlorobutadiene in an attempt to prepare a mull in this medium. The ¹⁹F NMR spectrum of the compound in tetrahydrofuran showed no abnormal broadening or shifts of the resonances, consistent with the expected diamagnetism of a divalent ytterbium compound, and the chemical shifts, 108.3 (o-F) and 161.4 (m- and p-F) ppm upfield from external CFCl₃, are in the range [5] for σ -bonded pentafluorophenyl organometallics. In the infrared spectrum (Nujol mull), intense features attributable to the pentafluorophenyl group [6] (1626, 1295, 1036 and 920 cm⁻¹) and to coordinated tetrahydrofuran [7] (1013 and 876 cm⁻¹) were observed. The visible spectrum (350–700 nm; tetrahydrofuran solution) showed maxima at 370 (log ϵ 2.76), 399 (log ϵ 2.73), and 444 (log ϵ 2.74) nm.

Preliminary experiments (transmetallation reactions and analyses of resulting solutions and precipitates) have shown that bis(2,3,5,6-tetrafluorophenyl)and bis(2,3,4,5-tetrafluorophenyl)-ytterbium can be prepared by the same method, but the compounds have not yet been isolated. Further investigations to establish the scope of transmetallations as a route to σ -bonded lanthanide and actinide organometallics are in progress. In view of the paucity of synthetic methods for these compounds [1], the prospect of a new route, even of limited generality, is of considerable interest.

Acknowledgement

We are grateful to the Australian Research Grants Committee for support and to Dr. W.D. Raverty for experimental assistance and helpful discussions.

References

- M. Tsutsui, N. Ely, A.E. Gebala and J.L. Atwood, Ann. N.Y. Acad. Sci., 239 (1974) 160; F. Calderazzo, J. Organometal. Chem., 79 (1974) 175; T.J. Marks, J. Organometal. Chem., 79 (1974) 181; 95 (1975) 301; M. Tsutsui, N. Ely and A. Gebala, Inorg. Chem., 14 (1975) 78; N.M. Ely and M. Tsutsui, Inorg. Chem., 14 (1975) 2680.
- 2 T.J. Marks, A.M. Seyam and J.R. Kolb, J. Amer. Chem. Soc., 95 (1973) 5529.
- 3 A.E. Crease and P. Legzdins, J. Chem. Soc. Chem. Commun., (1973) 775; A.E. Crease, P. Legzdins and E.R. Sigurdson, Ann. N.Y. Acad. Sci., 239 (1974) 129.
- 4 H. Gilman and R.G. Jones, J. Org. Chem., 10 (1945) 505.
- 5 S.C. Cohen and A.G. Massey, Advan. Fluorine Chem., 6 (1970) 83.
- 6 G.B. Deacon and J.C. Parrott, Aust. J. Chem., 24 (1971) 1771 and refs. therein.
- 7 J. Lewis, J.R. Miller, R.L. Richards and A. Thompson, J. Chem. Soc., (1965) 5850; R.J.H. Clark, J. Lewis, D.J. Machin and R.S. Nyholm, J. Chem. Soc., (1963) 379.